90=(n^2-81)

Simple and best practice solution for 90=(n^2-81) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 90=(n^2-81) equation:



90=(n^2-81)
We move all terms to the left:
90-((n^2-81))=0
We calculate terms in parentheses: -((n^2-81)), so:
(n^2-81)
We get rid of parentheses
n^2-81
Back to the equation:
-(n^2-81)
We get rid of parentheses
-n^2+81+90=0
We add all the numbers together, and all the variables
-1n^2+171=0
a = -1; b = 0; c = +171;
Δ = b2-4ac
Δ = 02-4·(-1)·171
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{19}}{2*-1}=\frac{0-6\sqrt{19}}{-2} =-\frac{6\sqrt{19}}{-2} =-\frac{3\sqrt{19}}{-1} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{19}}{2*-1}=\frac{0+6\sqrt{19}}{-2} =\frac{6\sqrt{19}}{-2} =\frac{3\sqrt{19}}{-1} $

See similar equations:

| 8a-2(3a-2)=10 | | (3x-41)=(2x+12) | | 0.2(x+4)=10 | | -24+12x=2(1x-3)+22 | | 0.6=30/x | | 10.50u=200+6.40u | | 8+y-2=12 | | 2(3x)=20 | | 2x+6÷3=5x+8 | | -196/9a=-100/7 | | 8-5r=(-2) | | -217/9a=-142/7 | | u=2/9 | | 7(x-3)+6=6x-4 | | -4(m-3))+7+5m=21 | | 1x+9-0.8x=5.2x+17-8 | | 7x-1=8-4x | | 2x+6=9-6 | | 3x+5-2x=-8 | | k-871=-679 | | 1/3x^2−2x+8=0 | | -3x+2x-7x=0 | | 12=3x=27 | | 7(x-8)+2=7x-53 | | 5x+14-4x=23+1x-9 | | x+4=113-2x | | 16y=768 | | 0.5x+1=0.333x+4 | | 25-3x=25 | | 4=-6+h | | 2x1+13x2=5 | | 2.5y=-5 |

Equations solver categories